Affiliation:
1. Department of Mathematics and Statistics, Northeast Petroleum University, Daqing, China
Abstract
Breast cancer is one of the cancers with high morbidity and mortality in the world, which is a serious threat to the health of women. With the development of deep learning, the recognition about computer-aided diagnosis technology is getting higher and higher. And the traditional data feature extraction technology has been gradually replaced by the feature extraction technology based on convolutional neural network which helps to realize the automatic recognition and classification of pathological images. In this paper, a novel method based on deep learning and wavelet transform is proposed to classify the pathological images of breast cancer. Firstly, the image flip technique is used to expand the data set, then the two-level wavelet decomposition and reconfiguration technology is used to sharpen and enhance the pathological images. Secondly, the processed data set is divided into the training set and the test set according to 8:2 and 7:3, and the YOLOv8 network model is selected to perform the eight classification tasks of breast cancer pathological images. Finally, the classification accuracy of the proposed method is compared with the classification accuracy obtained by YOLOv8 for the original BreaKHis dataset, and it is found that the algorithm can improve the classification accuracy of images with different magnifications, which proves the effectiveness of combining two-level wavelet decomposition and reconfiguration with YOLOv8 network model.
Reference27 articles.
1. Global cancer statistics: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;Sung;CA: A Cancer Journal for Clinicians,2021
2. Breast cancer statistics, racial disparity in mortality by state;DeSantis;CA: A Cancer Journal for Clinicians,2017
3. The current role of vacuum assisted breast biopsy system in breast disease;Park;Journal of Breast Cancer,2011
4. Pain in different methods of breast biopsy: Emphasis on vacuum-assisted breast biopsy;Zagouri;The Breast,2008
5. Synchrotron radiation imaging of female breast tissues using phase contrast technique;Jeong;Journal of Breast Cancer,2008