Predicting the error magnitude in patient-specific QA during radiotherapy based on ResNet

Author:

Huang Ying123,Pi Yifei4,Ma Kui5,Miao Xiaojuan6,Fu Sichao6,Feng Aihui13,Duan Yanhua13,Kong Qing1,Zhuo Weihai2,Xu Zhiyong3

Affiliation:

1. Institute of Modern Physics, Fudan University, Shanghai, China

2. Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, China

3. Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

4. Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Henan, China

5. Varian Medical Systems, Beijing, China

6. The General Hospital of Western Theater Command PLA, Chengdu, China

Abstract

BACKGROUND: The error magnitude is closely related to patient-specific dosimetry and plays an important role in evaluating the delivery of the radiotherapy plan in QA. No previous study has investigated the feasibility of deep learning to predict error magnitude. OBJECTIVE: The purpose of this study was to predict the error magnitude of different delivery error types in radiotherapy based on ResNet. METHODS: A total of 34 chest cancer plans (172 fields) of intensity-modulated radiation therapy (IMRT) from Eclipse were selected, of which 30 plans (151 fields) were used for model training and validation, and 4 plans including 21 fields were used for external testing. The collimator misalignment (COLL), monitor unit variation (MU), random multi-leaf collimator shift (MLCR), and systematic MLC shift (MLCS) were introduced. These dose distributions of portal dose predictions for the original plans were defined as the reference dose distribution (RDD), while those for the error-introduced plans were defined as the error-introduced dose distribution (EDD). Different inputs were used in the ResNet for predicting the error magnitude. RESULTS: In the test set, the accuracy of error type prediction based on the dose difference, gamma distribution, and RDD + EDD was 98.36%, 98.91%, and 100%, respectively; the root mean squared error (RMSE) was 1.45–1.54, 0.58–0.90, 0.32–0.36, and 0.15–0.24; the mean absolute error (MAE) was 1.06–1.18, 0.32–0.78, 0.25–0.27, and 0.11–0.18, respectively, for COLL, MU, MLCR and MLCS. CONCLUSIONS: In this study, error magnitude prediction models with dose difference, gamma distribution, and RDD + EDD are established based on ResNet. The accurate prediction of the error magnitude under different error types can provide reference for error analysis in patient-specific QA.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3