Semi-supervised segmentation of metal-artifact contaminated industrial CT images using improved CycleGAN

Author:

Jiang Shi Bo12,Sun Yue Wen12,Xu Shuo12,Zhang Hua Xia12,Wu Zhi Fang12

Affiliation:

1. Institute of Nuclear and New Energy Technology, Tsinghua University, BeiJing, China

2. Tsinghua University-Beijing Key Laboratory of Nuclear Detection Technology

Abstract

Accurate segmentation of industrial CT images is of great significance in industrial fields such as quality inspection and defect analysis. However, reconstruction of industrial CT images often suffers from typical metal artifacts caused by factors like beam hardening, scattering, statistical noise, and partial volume effects. Traditional segmentation methods are difficult to achieve precise segmentation of CT images mainly due to the presence of these metal artifacts. Furthermore, acquiring paired CT image data required by fully supervised networks proves to be extremely challenging. To address these issues, this paper introduces an improved CycleGAN approach for achieving semi-supervised segmentation of industrial CT images. This method not only eliminates the need for removing metal artifacts and noise, but also enables the direct conversion of metal artifact-contaminated images into segmented images without the requirement of paired data. The average values of quantitative assessment of image segmentation performance can reach 0.96645 for Dice Similarity Coefficient(Dice) and 0.93718 for Intersection over Union(IoU). In comparison to traditional segmentation methods, it presents significant improvements in both quantitative metrics and visual quality, provides valuable insights for further research.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3