Mechanical properties and motion of the cupula of the human semicircular canal

Author:

Selva Pierre1,Oman Charles M.2,Stone Howard A.3

Affiliation:

1. Université de Toulouse-IGM-ISAE, Toulouse, France

2. Man Vehicle Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

3. Princeton University, Department of Mechanical and Aerospace Engineering, Princeton, NJ, USA

Abstract

The mathematical model for the dynamics of the cupula-endolymph system of the inner ear semicircular canal, as elaborated by numerous investigators, remains a foundational tool in all of vestibular physiology. Most models represent the cupula as a linear spring-like element of stiffness K=ΔP/ΔV, where ΔV is the volume displaced upon application of a pressure difference ΔP. The parameter K directly influences the long time constant of the cupula-endolymph system. Given estimates of K based on experiments, we use thick and thin bending membrane theory, and also finite-element simulations based on more realistic cupula morphologies, to estimate the human cupula's Young's modulus E ≈ 5.4 Pa. We show that for a model morphology, thick bending membrane theory and finite-element predictions are in good agreement, and conclude that the morphology of the attachment of the cupula to the slope of the crista should not greatly influence the volume displacement. We note, however, that other biological materials with very low E are hydrogels that have significant viscoelastic properties. Experiments to directly measure E and investigate potential viscoelastic behavior ultimately may be needed. In addition, based on experimental images we study two other different shapes for the cupula and quantify their impact on the deflection of the cupula. We also use a three-dimensional finite-element model to analyze both the shear strain distribution and its time evolution near the sensory epithelium. We conclude that stimulation of sensory hair cells probably begins at the centre of the crista and spreads toward the periphery of the cupula and down the sides of the crista. Thus, spatio-temporal variations in the shearing stimulus are predicted to impact subsequent transduction and encoding. Finally, modeling the fluid-filled vertical channels believed to lie within the cupula, we investigate the impact of different tube diameters on the transverse displacement field. We show that, for the assumed diameters and grid spacing, cupula displacements should be highly sensitive to the diameter of the tubes. Experiments to verify the existence of cupular channels and accurately measure their diameter and spacing are needed.

Publisher

IOS Press

Subject

Clinical Neurology,Sensory Systems,Otorhinolaryngology,General Neuroscience

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3