DIAERESIS: RDF data partitioning and query processing on SPARK

Author:

Troullinou Georgia1,Agathangelos Giannis1,Kondylakis Haridimos1,Stefanidis Kostas2,Plexousakis Dimitris1

Affiliation:

1. FORTH-ICS, Heraklion, Crete, Greece

2. Tampere University, Finland

Abstract

The explosion of the web and the abundance of linked data demand effective and efficient methods for storage, management, and querying. Apache Spark is one of the most widely used engines for big data processing, with more and more systems adopting it for efficient query answering. Existing approaches exploiting Spark for querying RDF data, adopt partitioning techniques for reducing the data that need to be accessed in order to improve efficiency. However, simplistic data partitioning fails, on one hand, to minimize data access and on the other hand to group data usually queried together. This is translated into limited improvement in terms of efficiency in query answering. In this paper, we present DIAERESIS, a novel platform that accepts as input an RDF dataset and effectively partitions it, minimizing data access and improving query answering efficiency. To achieve this, DIAERESIS first identifies the top-k most important schema nodes, i.e., the most important classes, as centroids and distributes the other schema nodes to the centroid they mostly depend on. Then, it allocates the corresponding instance nodes to the schema nodes they are instantiated under. Our algorithm enables fine-tuning of data distribution, significantly reducing data access for query answering. We experimentally evaluate our approach using both synthetic and real workloads, strictly dominating existing state-of-the-art, showing that we improve query answering in several cases by orders of magnitude.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Property Graphs at Scale: A Roadmap and Vision for the Future (Short Paper);Lecture Notes in Business Information Processing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3