Exploring High Bandwidth Memory for PET Image Reconstruction

Author:

Yang Dai1,Küstner Tilman1,Al-Rihawi Rami1,Schulz Martin1

Affiliation:

1. d.yang@tum.de, tilman.kuestner@tum.de, martin.w.j.schulz@tum.de, Chair of Computer Architecture and Parallel Systems, Technical University of Munich

Abstract

Memory bandwidth plays an essential role in high performance computing. Its impact on system performance is evident when running applications with a low arithmetic intensity. Therefore, high bandwidth memory is on the agenda of many vendors. However, depending on the memory architecture, other optimizations are required to exploit the performance gain from high bandwidth memory technology. In this paper, we present our optimizations for the Maximum Likelihood Expectation-Maximization (MLEM) algorithm, a method for positron emission tomography (PET) image reconstruction, with a sparse matrix-vector (SpMV) kernel. The results show significant improvement in performance when executing the code on an Intel Xeon Phi processor with MCDRAM when compared to multi-channel DRAM. We further identify that the latency of the MCDRAM becomes a new limiting factor, requiring further optimization. Ultimately, after implementing cache-blocking optimization, we achieved a total memory bandwidth of up to 180 GB/s for the SpMV operation.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3