Software fault prediction using machine learning techniques with metric thresholds

Author:

Shatnawi Raed

Abstract

BACKGROUND: Fault data is vital to predicting the fault-proneness in large systems. Predicting faulty classes helps in allocating the appropriate testing resources for future releases. However, current fault data face challenges such as unlabeled instances and data imbalance. These challenges degrade the performance of the prediction models. Data imbalance happens because the majority of classes are labeled as not faulty whereas the minority of classes are labeled as faulty. AIM: The research proposes to improve fault prediction using software metrics in combination with threshold values. Statistical techniques are proposed to improve the quality of the datasets and therefore the quality of the fault prediction. METHOD: Threshold values of object-oriented metrics are used to label classes as faulty to improve the fault prediction models The resulting datasets are used to build prediction models using five machine learning techniques. The use of threshold values is validated on ten large object-oriented systems. RESULTS: The models are built for the datasets with and without the use of thresholds. The combination of thresholds with machine learning has improved the fault prediction models significantly for the five classifiers. CONCLUSION: Threshold values can be used to label software classes as fault-prone and can be used to improve machine learners in predicting the fault-prone classes.

Publisher

IOS Press

Subject

Artificial Intelligence,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Risk Prediction and Condition Maintenance of Distribution Network Based on Convolutional Neural Network;Proceedings of the 5th International Conference on Information Technologies and Electrical Engineering;2022-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3