ciTIzen-centric DAta pLatform (TIDAL): Sharing distributed personal data in a privacy-preserving manner for health research

Author:

Sun Chang1,Gallofré Ocaña Marc2,van Soest Johan34,Dumontier Michel1

Affiliation:

1. Institute of Data Science, Faculty of Science and Engineering, Maastricht University, The Netherlands

2. Department of Information Science and Media Studies, University of Bergen, Norway

3. Brightlands Institute of Smart Society (BISS), Faculty of Science and Engineering, Maastricht University, The Netherlands

4. Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, The Netherlands

Abstract

Developing personal data sharing tools and standards in conformity with data protection regulations is essential to empower citizens to control and share their health data with authorized parties for any purpose they approve. This can be, among others, for primary use in healthcare, or secondary use for research to improve human health and well-being. Ensuring that citizens are able to make fine-grained decisions about how their personal health data can be used and shared will significantly encourage citizens to participate in more health-related research. In this paper, we propose a ciTIzen-centric DatA pLatform (TIDAL) to give individuals ownership of their own data, and connect them with researchers to donate the use of their personal data for research while being in control of the entire data life cycle, including data access, storage and analysis. We recognize that most existing technologies focus on one particular aspect such as personal data storage, or suffer from executing data analysis over a large number of participants, or face challenges of low data quality and insufficient data interoperability. To address these challenges, the TIDAL platform integrates a set of components for requesting subsets of RDF (Resource Description Framework) data stored in personal data vaults based on SOcial LInked Data (Solid) technology and analyzing them in a privacy-preserving manner. We demonstrate the feasibility and efficiency of the TIDAL platform by conducting a set of simulation experiments using three different pod providers (Inrupt, Solidcommunity, Self-hosted Server). On each pod provider, we evaluated the performance of TIDAL by querying and analyzing personal health data with varying scales of participants and configurations. The reasonable total time consumption and a linear correlation between the number of pods and variables on all pod providers show the feasibility and potential to implement and use the TIDAL platform in practice. TIDAL facilitates individuals to access their personal data in a fine-grained manner and to make their own decision on their data. Researchers are able to reach out to individuals and send them digital consent directly for using personal data for health-related research. TIDAL can play an important role to connect citizens, researchers, and data organizations to increase the trust placed by citizens in the processing of personal data.

Publisher

IOS Press

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3