A novel ensembling of deep learning based intrusion detection system and scroll chaotic countermeasures for electric vehicle charging system

Author:

Suriya N.1,Vijay Shankar S.1

Affiliation:

1. Department of Electrical and Electronics Engineering, Sona College of Technology, Anna University, Salem, India

Abstract

The usage of Electric vehicle (EVs) has been exponentially growing due to its focus on eco-friendly means of transport, distributed charging platform and user dictated supporting infrastructures. The EVs are charged by the charging stations which equipped with Electric Vehicle Supply Equipment (EVSE) that contains Internet enabled computers. These systems are considered to be more important for controlling the function such as charging electric vehicles, authorization and smart connection to the local power grid using different wireless technologies such as green WIFI, Bluetooth and even 5 G. The cyber-attacks such as DoS and DDoS attacks can violate integrity, confidentiality and availability of the EVSE resources. Hence the intelligent Intrusion Detection System (IDS) is required to ensure the system for the robust and trustworthy deployment of EVSE resources. To meet the above challenge, this paper proposes new composite and intelligent system which contains the deep learning based IDS and high random chaotic generators to safeguard the data against the different cyber-attacks. The proposed IDS has been modelled based on Gated Recurrent Units (GRU) and counter measures are performed by adopting the Enhanced Chaotic Scroll attractor keys (ECSA). The contribution of this research paper is as follows: Novel Dataset Preparation for EVSE under different attack scenarios, Implementation of high accurate multi-objective accurate GRU based IDSs, Design of Enhanced Chaotic Countermeasure Encryption Schemes for the counterfeiting the attacks in Internet Enabled EVSE system. The extensive experimentation has been carried out into two important phases. In first phase algorithm centric metrics such as prediction accuracy, time of detection, whereas in second phase key centric metrics such as Number of Changing Pixel Rate (NPCR), Unified Averaged Changed Intensity (UACI), Key sensitivity and entropy are calculated and compared with the other existing methodologies. Results demonstrates that the proposed ensemble system has outperformed than the other methodologies and proves its strong place in designing the more secured Internet Enabled EVSE systems.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Regulated PID Controller for Improving EV Charging Station Performance by Harris Hawk Optimization Technique;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

2. Machine learning for enhancing transportation security: A comprehensive analysis of electric and flying vehicle systems;Engineering Applications of Artificial Intelligence;2024-03

3. A Machine Learning-Based Intrusion Detection System for IoT Electric Vehicle Charging Stations (EVCSs);Electronics;2023-02-20

4. Intrusion Detection for Electric Vehicle Charging Systems (EVCS);Algorithms;2023-01-31

5. DDoS Attack Detection in IoT Using Machine Learning Based Intrusion Detection System (IDS);2022 18th International Computer Engineering Conference (ICENCO);2022-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3