An improved genetic algorithm for robot path planning

Author:

Yao Zhifeng,Xu Ye

Abstract

The conventional genetic algorithm (GA) for path planning exists several drawbacks, such as uncertainty in the direction of robot movement, circuitous routes, low convergence rates, and prolonged search time. To solve these problems, this study introduces an improved GA-based path-planning algorithm that adopts adaptive regulation of crossover and mutation probabilities. This algorithm uses a hybrid selection strategy that merges elite, tournament, and roulette wheel selection methods. An adaptive approach is implemented to control the speed of population evolution through crossover and mutation. Combining with a local search operation enhances the optimization capability of the algorithm. The proposed algorithm was compared with the traditional GA through simulations, demonstrating shorter path lengths and reduced search times.

Publisher

IOS Press

Reference16 articles.

1. A set-based genetic algorithm for interval many-objective optimization problems;Gong;IEEE Transactions on Evolutionary Computation.,2018

2. Bezier curve based path planning in a dynamic field using modified genetic algorithm;Elhoseny;Journal of Computational Science.,2018

3. The runtime of the compact genetic algorithm on jump functions;Doerr;Algorithmica.,2022

4. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm;Chao;Computers & Geosciences.,2006

5. Multi-objective multi-robot path planning in continuous environment using an enhanced Genetic Algorithm;Nazarahari;Expert Systems with Applications.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3