Olfactory Phenotypes Differentiate Cognitively Unimpaired Seniors from Alzheimer’s Disease and Mild Cognitive Impairment: A Combined Machine Learning and Traditional Statistical Approach

Author:

Li Jennifer1,Bur Andres M.1,Villwock Mark R.1,Shankar Suraj1,Palmer Gracie1,Sykes Kevin J.1,Villwock Jennifer A.1

Affiliation:

1. University of Kansas Medical Center, Department of Otolaryngology - Head and Neck Surgery, Kansas City, KS, USA

Abstract

Background: Olfactory dysfunction (OD) is an early symptom of Alzheimer’s disease (AD). However, olfactory testing is not commonly performed to test OD in the setting of AD. Objective: This work investigates objective OD as a non-invasive biomarker for accurately classifying subjects as cognitively unimpaired (CU), mild cognitive impairment (MCI), and AD. Methods: Patients with MCI (n = 24) and AD (n = 24), and CU (n = 33) controls completed two objective tests of olfaction (Affordable, Rapid, Olfactory Measurement Array –AROMA; Sniffin’ Sticks Screening 12 Test –SST12). Demographic and subjective sinonasal and olfaction symptom information was also obtained. Analyses utilized traditional statistics and machine learning to determine olfactory variables, and combinations of variables, of importance for differentiating normal and disease states. Results: Inability to correctly identify a scent after detection was a hallmark of MCI/AD. AROMA was superior to SST12 for differentiating MCI from AD. Performance on the clove scent was significantly different between all three groups. AROMA regression modeling yielded six scents with AUC of the ROC of 0.890 (p < 0.001). Random forest model machine learning algorithms considering AROMA olfactory data successfully predicted MCI versus AD disease state. Considering only AROMA data, machine learning algorithms were 87.5%accurate (95%CI 0.4735, 0.9968). Sensitivity and specificity were 100%and 75%, respectively with ROC of 0.875. When considering AROMA and subject demographic and subjective data, the AUC of the ROC increased to 0.9375. Conclusion: OD differentiates CUs from those with MCI and AD and can accurately predict MCI versus AD. Leveraging OD data may meaningfully guide management and research decisions.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3