Predicting and Characterizing Neurodegenerative Subtypes with Multimodal Neurocognitive Signatures of Social and Cognitive Processes

Author:

Ibañez Agustín12345,Fittipaldi Sol236,Trujillo Catalina7,Jaramillo Tania7,Torres Alejandra7,Cardona Juan F.7,Rivera Rodrigo8,Slachevsky Andrea910,García Adolfo23411,Bertoux Maxime12,Baez Sandra13

Affiliation:

1. Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile

2. Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina

3. National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina

4. Global Brain Health Institute, University of California, San Francisco, CA, USA

5. Global Brain Health Institute, Trinity College Dublin (TCD), Dublin, Ireland

6. Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina

7. Instituto de Psicología, Universidad del Valle, Cali, Colombia

8. Neuroradiology Department, Instituto de Neurocirugia, Universidad de Chile, Santiago, Chile

9. Geroscience Center for Brain Health and Metabolism (GERO), Faculty of Medicine, University of Chile, Santiago, Chile

10. Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - ICBM, Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile

11. Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile

12. Lille Center of Excellence for Neurodegenerative Disorders (LICEND), CHU Lille, U1172 - Lille Neurosciences & Cognition, Université de Lille, Inserm, Lille, France

13. Universidad de los Andes, Bogotá, Colombia

Abstract

Background: Social cognition is critically compromised across neurodegenerative diseases, including the behavioral variant frontotemporal dementia (bvFTD), Alzheimer’s disease (AD), and Parkinson’s disease (PD). However, no previous study has used social cognition and other cognitive tasks to predict diagnoses of these conditions, let alone reporting the brain correlates of prediction outcomes. Objective: We performed a diagnostic classification analysis using social cognition, cognitive screening (CS), and executive function (EF) measures, and explored which anatomical and functional networks were associated with main predictors. Methods: Multiple group discriminant function analyses (MDAs) and ROC analyses of social cognition (facial emotional recognition, theory of mind), CS, and EF were implemented in 223 participants (bvFTD, AD, PD, controls). Gray matter volume and functional connectivity correlates of top discriminant scores were investigated. Results: Although all patient groups revealed deficits in social cognition, CS, and EF, our classification approach provided robust discriminatory characterizations. Regarding controls, probabilistic social cognition outcomes provided the best characterization for bvFTD (together with CS) and PD, but not AD (for which CS alone was the best predictor). Within patient groups, the best MDA probabilities scores yielded high classification rates for bvFTD versus PD (98.3%, social cognition), AD versus PD (98.6%, social cognition + CS), and bvFTD versus AD (71.7%, social cognition + CS). Top MDA scores were associated with specific patterns of atrophy and functional networks across neurodegenerative conditions. Conclusion: Standardized validated measures of social cognition, in combination with CS, can provide a dimensional classification with specific pathophysiological markers of neurodegeneration diagnoses.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3