High-speed PMSM thermal analysis of totally enclosed fan cooled axial ventilation for centrifugal blower application

Author:

Abubakar Usman1,Wang Xiaoyuan1,Haleem Shah Sayyed1,Gao Peng1,Wang Lixin1

Affiliation:

1. , Tianjin University, , China

Abstract

A temperature rise occurs when an electrical machine is fully loaded. The winding insulations of high-speed permanent magnet synchronous machines (PMSMs) are the most temperature-sensitive components, which can impact the machine’s longevity. Thus, recently, prediction for high-speed PMSM winding temperature has been given more and more attention. Thermal analysis by numerical (computational fluid dynamics (CFD) and finite element method (FEM)) and analytical lumped parameter thermal network (LPTN) methods have been widely used to estimate the temperature of totally enclosed fan cooled axial ventilation system (TEFCAVS) machines. Although numerical methods have more accuracy, their computation wastes time. Therefore, LPTN is being utilized in this paper due to the fastness of its computation. Firstly, estimated losses of high-speed PMSM with TEFCAVS via electromagnetic analysis, including copper, iron, permanent magnet (PM) eddy current, sleeve eddy current, and mechanical, are coupled to the LPTN model, which acts as heat sources for temperature prediction. Moreover, analysis shows that slot windings’ maximum temperature exceeds the winding insulation class with initial cooling configuration. Secondly, in order to mitigate slot winding temperature, the sensitivity study for liner conductivity, air gap’s heat transfer and lamination to housing’s contact is conducted by LPTN to identify which thermal parameter has more influence on mitigating the maximum temperature of the slot winding. Investigation shows that improving an air gap’s heat transfer has more influence than other parameters for mitigating slot winding maximum temperature below its insulation class. Lastly, the machine is designed and tested with the best thermal-sensitive parameters. Then test results for the maximum temperature of the winding are compared with estimated results to ensure the proposed LPTN correctness, and the calibration process confirms LPTN accuracy.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference45 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3