Affiliation:
1. Iwate Prefectural University, Takizawa, Japan
2. i-somet inc., Morioka, Japan
Abstract
One-class classification (OCC) is a classification problem where training data includes only one class. In such a problem, two types of classes exist, seen class and unseen class, and classifying these classes is a challenge. Besides, One-class Image Transformation Network (OCITN) is an OCC algorithm for image data. In which, image transformation network (ITN) is trained. ITN aims to transform all input image into one image, namely goal image. Moreover, the model error of ITN is computed as a distance metric between ITN output and a goal image. Besides, OCITN accuracy is related to goal image, and finding an appropriate goal image is challenging. In this paper, 234 goal images are experimented with in OCITN using the CIFAR10 dataset. Experiment results are analyzed with three image metrics: image entropy, similarity with seen images, and image derivatives.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献