Introducing Interactivity in Disaster Recovery Simulations

Author:

Abadeer Mina1,Magharious Sameh2,Gorlatch Sergei1

Affiliation:

1. University of Münster, Germany

2. Dell Technologies, USA

Abstract

Crowd simulations are widely used to study and predict the human behavior in disaster scenarios. In this paper, we introduce real-time user interactivity into the simulation process of virtual environments (e.g., buildings with rooms and doors between them). We develop a new tactical path-planning model that translates the interactive virtual environment into an abstract graph in order to calculate the shortest paths in real time. Our extension of the Vadere simulation framework with interactivity features allows the users to better understand the actual problem situations and to analyze them. Our experiments demonstrate the effectiveness of the approach by simulating the evacuation of students in groups and as individuals from the Schloss Muenster (the administrative building of the University of Muenster) in Germany. During simulation run time, the user can interact with the virtual environment spontaneously (e.g., by opening and closing doors) while our model recalculates the shortest paths for agents in real time.

Publisher

IOS Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3