LSTM Neural Networks for Detecting Anomalies Caused by Web Application Cyber Attacks

Author:

Kotenko Igor1,Lauta Oleg2,Kribel Kseniya3,Saenko Igor1

Affiliation:

1. Saint-Petersburg Federal Research Center of the Russian Academy of Sciences, Russia (SPC RAS)

2. The Admiral Makarov State University of Maritime and Inland Shipping, Russia

3. Saint-Petersburg Signal Academy, Russia

Abstract

Detecting anomalies in the traffic of computer networks is an important step in protecting and countering various types of cyber attacks. Among the many methods and approaches for detecting anomalies in network traffic, the most popular are machine learning methods that allow one to achieve high accuracy with minimal errors. One of the ways to improve the efficiency of anomaly detection using machine learning is the use of artificial neural networks of complex architecture, in particular, networks with long short-term memory (LSTM), which have demonstrated high efficiency in many areas. The paper is devoted to the study of the capabilities of LSTM neural networks for detecting network anomalies. It proposes using LSTM neural networks to detect network anomalies caused by cyber attacks to bypass Web Application Firewall vulnerabilities that are very difficult to detect by other means. For this purpose, it is proposed to use LSTM in conjunction with an autoencoder. The issues of software implementation of the proposed approach are considered. The experimental results obtained using the generated dataset confirmed the high efficiency of the developed approach. Experiments have shown that the proposed approach allows detecting cyber attacks in real or near real time.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3