One-Dimensional High-Order Dynamic Model of U-Shaped Thin-Wall Arm Segment of Telescopic Boom of Crane

Author:

Wang Hui1,Zhang Lei1,Liang Shilei1,Wang Yanyan1,Zhu Weidong2

Affiliation:

1. College of Mechanical and Electrical Engineering, Hohai University, Changzhou, China

2. Department of Mechanical Engineering, University of Maryland, Baltimore Country, MD 21250, USA

Abstract

In order to accurately analyse the dynamic performance of the arm segment, a dynamic model of u-shaped thin-walled beam based on one-dimensional high-order beam theory is proposed to predict the three-dimensional displacement of the beam at any point. First, a one-dimensional high-order model is established using Hamilton’s principle. The high-order model considers the displacement field by linear superposition of a set of basis functions that vary axially along the beam. A basis function represents a deformation mode, and interpolation polynomials are used to approximate the three-dimensional displacements of nodes on the center line of the section. At the same time, different section discretization methods are analysed, which have different influences on the precision of the model by discretization of the curved surface part of u-shaped section by straight transposition. Finally, the generalized characteristic of the model is worth to obtain the natural frequency, which is compared with the ANASYS plate and shell theory. The error range of the first 16 orders is within 1.5%. The results show that the discrete mode of the model has a certain influence on the frequency error, and the more discrete nodes of the circular arc part, the higher the accuracy.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3