Using MRNet to Predict Lunar Rock Categories Detected by Chang’e 5 Probe

Author:

Cui Jin1,Zou Yifei2,Zhang Siyuan3

Affiliation:

1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China

2. School of Environment, China University of Geosciences, Wuhan, China

3. Faculty of Engineering, University of Sydney, Sydney, Australia

Abstract

China’s Chang’e 5 mission has been a remarkable success, with the Chang’e 5 lander traveling on the Oceanus Procellarum to collect images of the lunar surface. Over the past half century, people have brought back some lunar rock samples, but its quantity does not meet the need for research. Under current circumstances, people still mainly rely on the analysis of rocks on the lunar surface through the detection of lunar rover. The Oceanus Procellarum, chosen by Chang’e 5 mission, contains various kinds of rock species. Therefore, we first applied to the National Astronomical Observatories of the China under the Chinese Academy of Sciences for the Navigation and Terrain Camera (NaTeCam) of the lunar surface image, and established a lunar surface rock image data set CE5ROCK. The data set contains 100 images, which randomly divided into training, validation and test set. Experimental results show that the identification accuracy testing on convolutional neural network (CNN) models like AlexNet or MobileNet is about to 40.0%. In order to make full use of the global information in Moon images, this paper proposes the MRNet (MoonRockNet) network architecture. The encoding structure of the network uses VGG16 for feature extraction, and the decoding part adds dilated convolution and commonly used U-Net structure on the original VGG16 decoding structure, which is more conducive to identify more refined but more sparsely distributed types of lunar rocks. We have conducted extensive experiments on the established CE5ROCK data set, and the experimental results show that MRNet can achieve more accurate rock type identification, and outperform other existing mainstream algorithms in the identification performance.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3