Microstructure Evolution and Element Redistribution in Carburizing Process of Ethylene Cracking Furnace Tube

Author:

Chen Jun1,Zhang Zhenjie2,Ding Xiaofei3,Ma Haitao1,Ma Haoran4

Affiliation:

1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 China

2. Research Institute of Lanzhou Petrochemical Company, Lanzhou 730060 China

3. School of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116300 China

4. School of Microelectronics, Dalian University of Technology, Dalian 116024 China

Abstract

Carburizing is the main damage form of ethylene cracking furnace tubes. In this process, the microstructure of the furnace tube would change and the element diffuses and redistributes. After serving for about 41000h, the radiation section of a plum blossom tube of SC-1 tubular cracking furnace from a petrochemical company was tested and analyzed in this article. Results show that the higher the service temperature, the more serious the carburizing of the furnace tube. In the inner-wall carburized zone of the middle temperature section of the furnace tube with an initial C content of 0.1wt%, the maximum C content reaches 1.83wt% and the number of carbides increases obviously as well as its organizational morphology changes from fine granular to coarse block or chain like and its organizational type changes from single M23C6 to the coexistence of M23C6, M7C3 and MC type carbides. The Cr and C elements in the carburized zone are mainly concentrated in the grain boundary area in the form of carbides. At the same time, the diffusion of alloy elements causes Cr deficiency in the matrix, and the carbide deficiency zone appears in the subsurface of the inner wall.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3