Automatic detection of COVID-19 in chest radiographs using serially concatenated deep and handcrafted features

Author:

Kannan S. Rajesh1,Sivakumar J.1,Ezhilarasi P.1

Affiliation:

1. St. Joseph’s College of Engineering, OMR, Chennai, India

Abstract

Since the infectious disease occurrence rate in the human community is gradually rising due to varied reasons, appropriate diagnosis and treatments are essential to control its spread. The recently discovered COVID-19 is one of the contagious diseases, which infected numerous people globally. This contagious disease is arrested by several diagnoses and handling actions. Medical image-supported diagnosis of COVID-19 infection is an approved clinical practice. This research aims to develop a new Deep Learning Method (DLM) to detect the COVID-19 infection using the chest X-ray. The proposed work implemented two methods namely, detection of COVID-19 infection using (i) a Firefly Algorithm (FA) optimized deep-features and (ii) the combined deep and machine features optimized with FA. In this work, a 5-fold cross-validation method is engaged to train and test detection methods. The performance of this system is analyzed individually resulting in the confirmation that the deep feature-based technique helps to achieve a detection accuracy of >  92% with SVM-RBF classifier and combining deep and machine features achieves >  96% accuracy with Fine KNN classifier. In the future, this technique may have potential to play a vital role in testing and validating the X-ray images collected from patients suffering from the infection diseases.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Reference33 articles.

1. Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices;Ahuja;Applied Intelligence,2021

2. An Automatic Classification of COVID with J48 and Simple K-Means using Weka;Chakkaravarthy;International Journal of Future Generation Communication and Networking,2020

3. Customized VGG19 architecture for pneumonia detection in chest X-rays;Dey;Pattern Recognition Letters,2021

4. A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians;Fernandes;Neural Computing and Applications,2020

5. Global weighted LBP based entropy features for the assessment of pulmonary hypertension;Gudigar;Pattern Recognition Letters,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3