A coronary artery CTA segmentation approach based on deep learning

Author:

Huang Caiyun1,Yin Changhua2

Affiliation:

1. School of Information and Mechanical Engineering, Hunan International Economics University, Changsha, China

2. Hunan Winmeter Energy Technology Co., Ltd, Changsha, China

Abstract

Presence of plaque and coronary artery stenosis are the main causes of coronary heart disease. Detection of plaque and coronary artery segmentation have become the first choice in detecting coronary artery disease. The purpose of this study is to investigate a new method for plaque detection and automatic segmentation and diagnosis of coronary arteries and to test its feasibility of applying to clinical medical image diagnosis. A multi-model fusion coronary CT angiography (CTA) vessel segmentation method is proposed based on deep learning. The method includes three network layer models namely, an original 3-dimensional full convolutional network (3D FCN) and two networks that embed the attention gating (AG) model in the original 3D FCN. Then, the prediction results of the three networks are merged by using the majority voting algorithm and thus the final prediction result of the networks is obtained. In the post-processing stage, the level set function is used to further iteratively optimize the results of network fusion prediction. The JI (Jaccard index) and DSC (Dice similarity coefficient) scores are calculated to evaluate accuracy of blood vessel segmentations. Applying to a CTA dataset of 20 patients, accuracy of coronary blood vessel segmentation using FCN, FCN-AG1, FCN-AG2 network and the fusion method are tested. The average values of JI and DSC of using the first three networks are (0.7962, 0.8843), (0.8154, 0.8966) and (0.8119, 0.8936), respectively. When using new fusion method, average JI and DSC of segmentation results increase to (0.8214, 0.9005), which are better than the best result of using FCN, FCN-AG1 and FCN-AG2 model independently.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3