Football teaching and training based on video surveillance using deep learning

Author:

Yang Ping1,Wu Xiaoneng2

Affiliation:

1. School of Media and Design, Hangzhou Dianzi University, Hangzhou, Zhejiang, China

2. Yangzhou Polytechnic College, Yangzhou, Jiangsu, China

Abstract

BACKGROUND: The objective performance evaluation of an athlete is essential to allow detailed research into elite sports. The automatic identification and classification of football teaching and training exercises overcome the shortcomings of manual analytical approaches. Video monitoring is vital in detecting human conduct acts and preventing or reducing inappropriate actions in time. The video’s digital material is classified by relevance depending on those individual actions. OBJECTIVE: The research goal is to systematically use the data from an inertial measurement unit (IMU) and data from computer vision analysis for the deep Learning of football teaching motion recognition (DL-FTMR). There has been a search for many libraries. The studies included have examined and analyzed training through profound model construction learning methods. Investigations show the ability to distinguish the efficiency of qualified and less qualified officers for sport-specific video-based decision-making assessments. METHODS: Video-based research is an effective way of assessing decision-making due to the potential to present changing in-game decision-making scenarios more environmentally friendly than static picture printing. The data showed that the filtering accuracy of responses is improved without losing response time. This observation indicates that practicing with a video monitoring system offers a play view close to that seen in a game scenario. It can be an essential way to improve the perception of selection precision. This study discusses publicly accessible training datasets for Human Activity Recognition (HAR) and presents a dataset that combines various components. The study also used the UT-Interaction dataset to identify complex events. RESULTS: Thus, the experimental results of DL-FTMR give a performance ratio of 94.5%, behavior processing ratio of 92.4%, athletes energy level ratio of 92.5%, interaction ratio of 91.8%, prediction ratio of 92.5%, sensitivity ratio of 93.7%, and the precision ratio of 94.86% compared to the optimized convolutional neural network (OCNN), Gaussian Mixture Model (GMM), you only look once (YOLO), Human Activity Recognition- state-of-the-art methodologies (HAR-SAM). CONCLUSION: This finding proves that exercising a video monitoring system that provides a play view similar to that seen in a game scenario can be a valuable technique to increase selection accuracy perception.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3