IoT-based external attacks aware secure healthcare framework using blockchain and SB-RNN-NVS-FU techniques

Author:

Kuppusamy Ramesh1,Murugesan Anbarasan2

Affiliation:

1. Department of Computer Science and Engineering, V.R.S. College of Engineering and Technology, Arasur, India

2. Department of Artificial Intelligence and Data Science, Panimalar Engineering College, Chennai, India

Abstract

BACKGROUND: In recent times, there has been widespread deployment of Internet of Things (IoT) applications, particularly in the healthcare sector, where computations involving user-specific data are carried out on cloud servers. However, the network nodes in IoT healthcare are vulnerable to an increased level of security threats. OBJECTIVE: This paper introduces a secure Electronic Health Record (EHR) framework with a focus on IoT. METHODS: Initially, the IoT sensor nodes are designated as registered patients and undergo initialization. Subsequently, a trust evaluation is conducted, and the clustering of trusted nodes is achieved through the application of Tasmanian Devil Optimization (STD-TDO) utilizing the Student’s T-Distribution. Utilizing the Transposition Cipher-Squared random number generator-based-Elliptic Curve Cryptography (TCS-ECC), the clustered nodes encrypt four types of sensed patient data. The resulting encrypted data undergoes hashing and is subsequently added to the blockchain. This configuration functions as a network, actively monitored to detect any external attacks. To accomplish this, a feature reputation score is calculated for the network’s features. This score is then input into the Swish Beta activated-Recurrent Neural Network (SB-RNN) model to classify potential attacks. The latest transactions on the blockchain are scrutinized using the Neutrosophic Vague Set Fuzzy (NVS-Fu) algorithm to identify any double-spending attacks on non-compromised nodes. Finally, genuine nodes are granted permission to decrypt medical records. RESULTS: In the experimental analysis, the performance of the proposed methods was compared to existing models. The results demonstrated that the suggested approach significantly increased the security level to 98%, reduced attack detection time to 1300 ms, and maximized accuracy to 98%. Furthermore, a comprehensive comparative analysis affirmed the reliability of the proposed model across all metrics. CONCLUSION: The proposed healthcare framework’s efficiency is proved by the experimental evaluation.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3