A review on computer vision and machine learning techniques for automated road surface defect and distress detection

Author:

Chen Xuejing1,Yongchareon Sira1,Knoche Martin2

Affiliation:

1. Computer Science and Software Engineering Department, Auckland University of Technology, Auckland, New Zealand

2. N3T Limited, Whangarei, New Zealand

Abstract

As the pace grows in the development of image processing techniques and the current applications rise in machine learning and deep learning techniques for visual inspections and physical assessment, this article reviews the existing literature. It provides a detailed synthesis of the overview of surface pavement conditions, computer-vision-based technologies for road damage detection, various datasets and data collection methods. We analyse and compare different machine-learning methods and models proposed in the literature and identify challenges that need to be addressed in the future in road surface defect detection.

Publisher

IOS Press

Reference62 articles.

1. Analysis of edge-detection techniques for crack identification in bridges;Abdel-Qader;Journal of Computing in Civil Engineering,2003

2. PCA-based algorithm for unsupervised bridge crack detection;Abdel-Qader;Advances in Engineering Software,2006

3. Automatic pixel-level pavement crack detection using information of multi-scale neighborhoods;Ai;IEEE Access,2018

4. Impact of pavement condition on rural road accidents;Al-Masaeid;Canadian Journal of Civil Engineering,1997

5. IOP Conference Series: Earth and Environmental Science;Baskara,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3