Affiliation:
1. School of Forestry, Northeast Forestry University, People’s Republic of China
2. Department of Food Technology, Faculty of Science and Technology, University of Al Azhar Indonesia, Indonesia
3. Key Laboratory of Forest Food Resources Utilization, People’s Republic of China
4. Department of Clinical Laboratory, The Forth Affiliated Hospital of Harbin Medical University, People’s Republic of China
Abstract
BACKGROUND: Lingonberry (Vaccinium vitis-idaea L.), as an important natural and wild plant resource in the world, has high economic and nutritional values. Many researchers have focused on the effect of antioxidant and enzyme inhibitors. OBJECTIVE: The present study aimed to evaluate the active ingredients, in vitro antioxidant and enzyme-inhibitory activity from different parts (root, stem, leaf, and fruit) of wild lingonberry. METHODS: The active ingredients of lingonberry were determined by ultra-performance liquid chromatography-triple quadrupole-mass spectrometry (UPLC-TQ-MS/MS). Antioxidant activities were measured by DPPH, ABTS, FRAP and CUPRAC assays. Principal component analysis (PCA) and agglomerated hierarchical clustering (AHC) were used to analyze the relationship between active ingredients, antioxidant and enzyme-inhibitory activity. RESULTS: Phenolic compounds were significantly higher in leaf and stem. The enzyme inhibitory of the extracts varied observably according to the plant parts. Fruit had the highest acetylcholinesterase (317.67 mg GALAEs/g) and butyrylcholinesterase (346.04 mg GALAEs/g) inhibitory activity, while leaf had the most potent activity on α-amylase (256.59 mg ACAEs/g), α-glucosidase (186.70 mg ACAEs/g) and tyrosinase (42.87 mg KAEs/g). Tyrosinase had strong correlation and similarity with phenolic acids and flavonoids in the correlation analysis and PCA. CONCLUSIONS: 29 active ingredients were detected, including phenolic acids, flavonoids, anthocyanins, and triterpenes. Lingonberry sample to inhibit the activity of tyrosinase was associated with five flavonoids (kaempferol-3-O-galactoside, kaempferol-3-O-β-D-glucosyl (1 ⟶ 2) galactoside, biorobin,,quercetin 3-O-glucoside-7-O-rhamnoside, rutinum) and phenolic acid content (arbutin). These results suggested that the lingonberry could be used as a promising natural resource for functional food and medicinal development.
Subject
Horticulture,Plant Science,Soil Science,Agronomy and Crop Science,Biochemistry,Food Science