Analysis of flow field in Si3N4 dry granulation chamber with non-standard composite structure

Author:

Jiang Zhuting,Ning Xiang,Duan Tao,Wu Nanxing,Yu Dongling

Abstract

In order to improve the whirling phenomenon of Si3N4 particles in the granulation chamber, the influence of the structure of the granulation chamber on the internal distribution is explored. Euler Euler’s two-phase flow model is established. The flow field in the combined structure granulation chamber with different layout is simulated. The volume distribution and velocity field change of Si3N4 particles in the combined structure granulation chamber with different layout are analyzed. The results show that the angle between two adjacent composite structures is 20∘, 60∘, 80∘ and completely standard the Si3N4 particles with volume fraction index greater than 0.8 account for 10.2%, 11.5%, 12.5% and 6.7% of the total volume respectively. When the combined structure is completely standard, several small convolutions are found. The whirling phenomenon in the granulation chamber is improved. When the angle between two adjacent composite structures is 20∘, 60∘, 80∘ and complete standard, the proportion of qualified particles is 59%, 64%, 66% and 68%. The fluidity index is 84, 85, 87 and 88, respectively. To sum up, the combination structure of the granulation chamber is a complete standard, it is beneficial to improve the spin phenomenon of Si3N4 particles in the granulation chamber.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

Reference24 articles.

1. Study on friction characterization and wear-resistance properties of Si3N4 ceramic sliding against different high-temperature alloys;Huang;Ceramics International,2016

2. Wear and friction of TiAl matrix self-lubricating composites against Si3N4 in air at room and elevated temperatures;Xu;Tribology Transactions,2014

3. Ceramic bearings for total hip arthroplasty have high survivorship at 10 years;D’Antonio;Clinical Orthopaedics and Related Research,2012

4. Stepwise-graded Si3N4-SiC ceramics with improved wear properties;Thompson;Journal of the American Ceramic Society,2002

5. Advances in high reliability ceramic bearing technology;Wang;Aeroengine,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3