Creep, fatigue, and creep-fatigue crack growth behaviours of P92 steel at 600 °C

Author:

Alang N.A.1,Nikbin K.2

Affiliation:

1. , Universiti Malaysia Pahang, , Malaysia

2. , Imperial College London, , UK

Abstract

High-temperature components in power generation plant are exposed to creep, fatigue, and creep-fatigue environment during service. The components are usually under multiaxial state of stress condition. Understanding how the material behaves under these loading and environment is essential in order to sustain and keep the plant safe. The present paper aims to investigate the creep rupture and crack growth behaviours of P92 steel at 600 °C. For creep rupture test, notched bars with two different notch radii were prepared and tested under creep condition between 250 and 3500 hours at 600 °C, while the C-shaped specimen was prepared for fatigue and creep-fatigue crack growth tests. The material tested under creep condition showed notch strengthening effect where the life of notched bar specimen increased compared to smooth specimens when the net stress against creep time data was plotted. The effect was more significant as the notch radius decreased. It was also observed that the rupture life of all specimens was von-Mises stress controlled. Based on the fatigue test, it was found that the frequency in a range of 0.1 Hz–10 Hz was insignificantly affecting the crack growth rate. Under creep-fatigue, however, the material showed frequency-dependent behaviour. Observation on the fracture surface revealed that the ductile dimple associated with plasticity was dominant for all creep specimens. In addition, frequency independent specimen was associated with the transgranular fracture, thus flat appearance was evident, while fracture surface of frequency dependent specimen was roughly associated with intergranular fracture.

Publisher

IOS Press

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3