Enhancing Adaboost performance in the presence of class-label noise: A comparative study on EEG-based classification of schizophrenic patients and benchmark datasets

Author:

Pouya Omid Ranjbar1,Boostani Reza2,Sabeti Malihe3

Affiliation:

1. Independent Researcher, Burnaby, Canada

2. Computer Science and Engineering. Department, Shiraz University, Fars, Iran

3. Computer Engineering Department, Islamic Azad University, Tehran, Iran

Abstract

The performance of Adaboost is highly sensitive to noisy and outlier samples. This is therefore the weights of these samples are exponentially increased in successive rounds. In this paper, three novel schemes are proposed to hunt the corrupted samples and eliminate them through the training process. The methods are: I) a hybrid method based on K-means clustering and K-nearest neighbor, II) a two-layer Adaboost, and III) soft margin support vector machines. All of these solutions are compared to the standard Adaboost on thirteen Gunnar Raetsch’s datasets under three levels of class-label noise. To test the proposed method on a real application, electroencephalography (EEG) signals of 20 schizophrenic patients and 20 age-matched control subjects, are recorded via 20 channels in the idle state. Several features including autoregressive coefficients, band power and fractal dimension are extracted from EEG signals of all participants. Sequential feature subset selection technique is adopted to select the discriminative EEG features. Experimental results imply that exploiting the proposed hunting techniques enhance the Adaboost performance as well as alleviating its robustness against unconfident and noisy samples over Raetsch benchmark and EEG features of the two groups.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3