Building knowledge graphs from technical documents using named entity recognition and edge weight updating neural network with triplet loss for entity normalization

Author:

Jeon Sung Hwan1,Lee Hye Jin1,Park Jihye1,Cho Sungzoon12

Affiliation:

1. Department of Industrial Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Korea

2. Institute for Industrial Systems Innovation, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Korea

Abstract

Attempts to express information from various documents in graph form are rapidly increasing. The speed and volume in which these documents are being generated call for an automated process, based on machine learning techniques, for cost-effective and timely analysis. Past studies responded to such needs by building knowledge graphs or technology trees from the bibliographic information of documents, or by relying on text mining techniques in order to extract keywords and/or phrases. While these approaches provide an intuitive glance into the technological hotspots or the key features of the select field, there still is room for improvement, especially in terms of recognizing the same entities appearing in different forms so as to interconnect closely related technological concepts properly. In this paper, we propose to build a patent knowledge network using the United States Patent and Trademark Office (USPTO) patent filings for the semiconductor device sector by fine-tuning Huggingface’s named entity recognition (NER) model with our novel edge weight updating neural network. For the named entity normalization, we employ edge weight updating neural network with positive and negative candidates that are chosen by substring matching techniques. Experiment results show that our proposed approach performs very competitively against the conventional keyword extraction models frequently employed in patent analysis, especially for the named entity normalization (NEN) and document retrieval tasks. By grouping entities with named entity normalization model, the resulting knowledge graph achieves higher scores in retrieval tasks. We also show that our model is robust to the out-of-vocabulary problem by employing the fine-tuned BERT NER model.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3