A hybrid model for the classification of Autism Spectrum Disorder using Mu rhythm in EEG

Author:

Radhakrishnan Menaka1,Ramamurthy Karthik1,Shanmugam Saranya2,Prasanna Gaurav2,S Vignesh2,Y Surya2,Won Daehan3

Affiliation:

1. Centre for Cyber Physical Systems, School of Electronics Engineering, Vellore Institute of Technology, Chennai, India

2. School of Electronics Engineering, Vellore Institute of Technology, Chennai, India

3. Department of System Science and Industrial Engineering, Binghamton University, Binghamton, NY, USA

Abstract

BACKGROUND: Autism Spectrum Disorder (ASD) is a condition with social interaction, communication, and behavioral difficulties. Diagnostic methods mostly rely on subjective evaluations and can lack objectivity. In this research Machine learning (ML) and deep learning (DL) techniques are used to enhance ASD classification. OBJECTIVE: This study focuses on improving ASD and TD classification accuracy with a minimal number of EEG channels. ML and DL models are used with EEG data, including Mu Rhythm from the Sensory Motor Cortex (SMC) for classification. METHODS: Non-linear features in time and frequency domains are extracted and ML models are applied for classification. The EEG 1D data is transformed into images using Independent Component Analysis-Second Order Blind Identification (ICA-SOBI), Spectrogram, and Continuous Wavelet Transform (CWT). RESULTS: Stacking Classifier employed with non-linear features yields precision, recall, F1-score, and accuracy rates of 78%, 79%, 78%, and 78% respectively. Including entropy and fuzzy entropy features further improves accuracy to 81.4%. In addition, DL models, employing SOBI, CWT, and spectrogram plots, achieve precision, recall, F1-score, and accuracy of 75%, 75%, 74%, and 75% respectively. The hybrid model, which combined deep learning features from spectrogram and CWT with machine learning, exhibits prominent improvement, attained precision, recall, F1-score, and accuracy of 94%, 94%, 94%, and 94% respectively. Incorporating entropy and fuzzy entropy features further improved the accuracy to 96.9%. CONCLUSIONS: This study underscores the potential of ML and DL techniques in improving the classification of ASD and TD individuals, particularly when utilizing a minimal set of EEG channels.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3