A multiple hierarchical clustering ensemble algorithm to recognize clusters arbitrarily shaped

Author:

Sun Yuqin1,Wang Songlei1,Huang Dongmei2,Sun Yuan1,Hu Anduo2,Sun Jinzhong2

Affiliation:

1. School of Mathematics and Physics, Shanghai University of Electric Power, Pudong New District, Shanghai, China

2. School of Electronics and Information Engineering, Shanghai University of Electric Power, Pudong New District, Shanghai, China

Abstract

As a research hotspot in ensemble learning, clustering ensemble obtains robust and highly accurate algorithms by integrating multiple basic clustering algorithms. Most of the existing clustering ensemble algorithms take the linear clustering algorithms as the base clusterings. As a typical unsupervised learning technique, clustering algorithms have difficulties properly defining the accuracy of the findings, making it difficult to significantly enhance the performance of the final algorithm. AGglomerative NESting method is used to build base clusters in this article, and an integration strategy for integrating multiple AGglomerative NESting clusterings is proposed. The algorithm has three main steps: evaluating the credibility of labels, producing multiple base clusters, and constructing the relation among clusters. The proposed algorithm builds on the original advantages of AGglomerative NESting and further compensates for the inability to identify arbitrarily shaped clusters. It can establish the proposed algorithm’s superiority in terms of clustering performance by comparing the proposed algorithm’s clustering performance to that of existing clustering algorithms on different datasets.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3