Spatial-temporal trajectory anomaly detection based on an improved spectral clustering algorithm

Author:

Guo Yishan,Liu Mandan

Abstract

With the development of wireless communication technology, when users use wireless networks to meet various needs, wireless networks also record a large number of users’ spatial-temporal trajectory data. In order to better pay attention to the healthy development of students and promote the information construction on campus, a spectral clustering algorithm based on the multi-scale threshold and density combined with shared nearest neighbors (MSTDSNN-SC) is proposed. Firstly, it improves the affinity distance function based on the shortest time dis-tance-shortest time distance sub-sequence (STD-STDSS) by adding location popularity and uses this model to construct the initial adjacency matrix. Then it introduces the covariance scale threshold and spatial scale threshold to perform 0–1 processing on the adjacency matrix to obtain more accurate sample similarity. Next, it constructs an eigenvector space by eigenvalue decom-position of the adjacency matrix. Finally, it uses DBSCAN clustering algorithm with shared nearest neighbors to avoid to manually determine the number of clusters. Taking Internet usage data on campus as an example, multiple clustering algorithms are used for anomaly detection and four evaluation metrics are applied to estimate the clustering results. MSTDSNN-SC algorithm reflects better clustering performance. Furthermore, the abnormal trajectories list is verified to be effective and credible.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

Reference50 articles.

1. M. Ester, H.-P. Kriegel, J. Sander and X. Xu, A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, 1996. pp. 226–31.

2. S. Bai, Z. He, Y. Lei, W. Wu, C. Zhu, M. Sun et al., Traffic Anomaly Detection via Perspective Map based on Spatial-temporal Information Matrix, CVPR Workshops; 2019.

3. On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms;Yamanishi;Data Mining and Knowledge Discovery,2004

4. N. Ferreira, J.T. Klosowski, C.E. Scheidegger and C.T. Silva, Vector field k乚means: Clustering trajectories by fitting multiple vector fields, Computer Graphics Forum; 2013: Wiley Online Library.

5. J. Navarro, I. Martin de Diego, A. Fernandez-Isabel, F. Ortega and M. Assoc Comp, Fusion of GPS and Accelerometer Information for Anomalous Trajectories Detection, 2019. pp. 43–8.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3