An Innovative AI-Based System for Corruption Risks Assessment Among Corporate Managers to Support Open Source Analysis

Author:

Morra Emanuele1,Revetria Roberto1,Pecorino Danilo2,Giudici Matteo2,Galli Gabriele3

Affiliation:

1. Genoa University, DIME (Department of Mechanical Engineering), 16145, Genoa, Italy

2. Proactive Compliance Technologies SRL, University Campus in Savona, 17100, Savona, Italy

3. University of Michigan – Dearborn, IMSE (Industrial and Manufacturing System Engineering), 48128, Dearborn MI, USA

Abstract

The paper has its focus on the creation of an innovative Natural Language Processing system for the quest of available information and consequent data analysis, aimed at reconstructing the corporate chain and monitoring the sensitive risk of corruption for people involved in command positions. Today, the greatest opportunity in finding information is represented by the Internet or other open sources, where the contents related to corporate managers are continuously posted and updated. Given the vastness of the information dimension, it seems remarkably advantageous to have an intelligent analysis system capable of independently finding, analyzing and synthesizing information related to a set of target subjects. The aim of this document is to describe a forecasting model based on Machine Learning and Artificial Intelligence techniques capable of understanding whether a news item related to an individual (sought during a due diligence process) contains information about crime, investigation, conviction, fraud, corruption or sanction relating to the subject sought. Methods based on Artificial Neural Networks and Support Vector Machine, compared one to the others, are introduced and applied for the scope. In particular, results showed the architecture based on SVM with TF-IDF matrix and test pre-processing outperforms the others discussed in this paper demonstrating high accuracy and precision in prediction new data as well.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3