Machine Learning Based Multimodal Neuroimaging Genomics Dementia Score for Predicting Future Conversion to Alzheimer’s Disease

Author:

Mirabnahrazam Ghazal1,Ma Da21,Lee Sieun13,Popuri Karteek1,Lee Hyunwoo4,Cao Jiguo5,Wang Lei6,Galvin James E.7,Beg Mirza Faisal1,

Affiliation:

1. School of Engineering, Simon Fraser University, Burnaby, BC, Canada

2. School of Medicine, Wake Forest University, Winston-Salem, NC, USA

3. Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom

4. Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada

5. Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada

6. Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA

7. Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA

Abstract

Background: The increasing availability of databases containing both magnetic resonance imaging (MRI) and genetic data allows researchers to utilize multimodal data to better understand the characteristics of dementia of Alzheimer’s type (DAT). Objective: The goal of this study was to develop and analyze novel biomarkers that can help predict the development and progression of DAT. Methods: We used feature selection and ensemble learning classifier to develop an image/genotype-based DAT score that represents a subject’s likelihood of developing DAT in the future. Three feature types were used: MRI only, genetic only, and combined multimodal data. We used a novel data stratification method to better represent different stages of DAT. Using a pre-defined 0.5 threshold on DAT scores, we predicted whether a subject would develop DAT in the future. Results: Our results on Alzheimer’s Disease Neuroimaging Initiative (ADNI) database showed that dementia scores using genetic data could better predict future DAT progression for currently normal control subjects (Accuracy = 0.857) compared to MRI (Accuracy = 0.143), while MRI can better characterize subjects with stable mild cognitive impairment (Accuracy = 0.614) compared to genetics (Accuracy = 0.356). Combining MRI and genetic data showed improved classification performance in the remaining stratified groups. Conclusion: MRI and genetic data can contribute to DAT prediction in different ways. MRI data reflects anatomical changes in the brain, while genetic data can detect the risk of DAT progression prior to the symptomatic onset. Combining information from multimodal data appropriately can improve prediction performance.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3