Optimization of wireless network node deployment in smart city based on adaptive particle swarm optimization

Author:

Wang Weiqiang1

Affiliation:

1. Chongqing College of Electronic Engineering, Chongqing, China

Abstract

In smart city wireless network infrastructure, network node deployment directly affects network service quality. This problem can be attributed to deploying a suitable ordinary AP node as a wireless terminal access node on a given geometric plane, and deploying a special node as a gateway to aggregate. Traffic from ordinary nodes is to the wired network. In this paper, Pareto multi-objective optimization strategy is introduced into the wireless sensor network node security deployment, and an improved multi-objective particle swarm coverage algorithm based on secure connection is designed. Firstly, based on the mathematical model of Pareto multi-objective optimization, the multi-target node security deployment model is established, and the security connectivity and node network coverage are taken as the objective functions, and the problems of wireless sensor network security and network coverage quality are considered. The multi-objective particle swarm optimization algorithm is improved by adaptively adjusting the inertia weight and particle velocity update. At the same time, the elite archive strategy is used to dynamically maintain the optimal solution set. The high-frequency simulation software Matlab and simulation platform data interaction are used to realize the automatic modeling, simulation analysis, parameter prediction and iterative optimization of wireless network node deployment in smart city based on adaptive particle swarm optimization. Under the premise of meeting the performance requirements of wireless network nodes in smart cities, the experimental results show that although the proposed algorithm could not achieve the accuracy of using only particle swarm optimization algorithm to optimize the parameters of wireless network nodes in smart cities, the algorithm is completed. The antenna parameter optimization process takes less time and the optimization efficiency is higher.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference22 articles.

1. Smart grid adaptive energy conservation and optimization engine utilizing Particle Swarm Optimization and Fuzzification[J];Manbachi;Applied Energy,2016

2. Deployment of Wireless Sensor Networks for Oilfield Monitoring by Multiobjective Discrete Binary Particle Swarm Optimization[J];Yang;Journal of Sensors,2016

3. The Relation of Artificial Intelligence with Internet Of Things: A survey;Mohamed;Journal of Cybersecurity and Information Management,2020

4. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms[J];Zhang;Sensors,2016

5. Particle swarm optimization for charger deployment in wireless rechargeable sensor networks[J];Jiang;International Journal of Parallel Emergent & Distributed Systems,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3