A grammar for specifying full-body gestures elicited for abstract tasks

Author:

Céspedes-Hernández David1,González-Calleros Juan Manuel1,Guerrero-García Josefina1,Vanderdonckt Jean2

Affiliation:

1. Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla, Mexico

2. Université catholique de Louvain (UCLouvain), LouRIM. Place des Doyens, 1. B-1348 Louvain-la-Neuve, Belgium

Abstract

A gesture elicitation study consists of a popular method for eliciting a sample of end end users to propose gestures for executing functions in a certain context of use, specified by its users and their functions, the device or the platform used, and the physical environment in which they are working. Gestures proposed in such a study needs to be classified and, perhaps, extended in order to feed a gesture recognizer. To support this process, we conducted a full-body gesture elicitation study for executing functions in a smart home environment by domestic end users in front of a camera. Instead of defining functions opportunistically, we define them based on a taxonomy of abstract tasks. From these elicited gestures, a XML-compliant grammar for specifying resulting gestures is defined, created, and implemented to graphically represent, label, characterize, and formally present such full-body gestures. The formal notation for specifying such gestures is also useful to generate variations of elicited gestures to be applied on-the-fly on gestures in order to allow one-shot learning.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference20 articles.

1. What are you really saying?;Anders;Physician Leadership Journal

2. Gesture recognition in patients with aphasia;Daniloff;Journal of Speech and Hearing Disorders,1982

3. Head gesture recognition for hands-free control of an intelligent wheel-chair;Jia;Industrial Robot: An International Journal,2007

4. A methodology for gestural interaction relying on user-defined gestures sets following a one-shot learning approach;Céspedes-Hernández;Journal of Intelligent & Fuzzy Systems,2019

5. Gesture recognition: A survey;Mitra;IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3