Application of artificial fish swarm optimization semi-supervised kernel fuzzy clustering algorithm in network intrusion

Author:

Zong Yongsheng12,Huang Guoyan1

Affiliation:

1. College of Information Science and Engineering, Yanshan University, Qinhuangdao, P.R. China

2. Qinhuangdao Vocational and Technical College, Qinhuangdao, P.R. China

Abstract

For the unsupervised learning based clustering algorithm, the intrusion detection rate is low, and the training sample based on supervised learning clustering algorithm is insufficient. A semi-supervised kernel fuzzy C-means clustering algorithm based on artificial fish swarm optimization (AFSA-KFCM) is proposed. Firstly, the kernel function is used to change the distance function in the traditional semi-supervised fuzzy C-means clustering algorithm to define a new objective function, thus improving the probabilistic constraints of the fuzzy C-means algorithm. Then, the artificial fish swarm algorithm with strong global optimization ability is used to improve the KFCM sensitivity to the initial cluster center and easy to fall into the local extremum, thus improving the convergence speed and improving the classification effect. The test results in the Wine and IRIS public datasets show that the AFSA-KFCM clustering algorithm is superior to the traditional algorithm in clustering accuracy and time efficiency. At the same time, the experimental results in KDDCUP99 experimental data show that the algorithm can obtain the ideal detection rate and false detection rate in intrusion detection.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference21 articles.

1. Network security;Lee;Engineering & Technology Reference,2014

2. Network security and contagion;Acemoglu;Journal of Economic Theory,2014

3. Physical layer network security in the full-duplex relay system;Chen;IEEE Transactions on Information Forensics & Security,2015

4. Collaborative network security in multi-tenant data center for cloud computing;Chen;Tsinghua Science & Technology,2014

5. Probabilistic threat propagation for network security;Carter;IEEE Transactions on Information Forensics & Security,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3