Extractive summarization using siamese hierarchical transformer encoders

Author:

González José Ángel1,Segarra Encarna1,García-Granada Fernando1,Sanchis Emilio1,Hurtado Lluís-F.1

Affiliation:

1. VRAIN: Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de València, Camí de Vera sn, València, Spain

Abstract

In this paper, we present an extractive approach to document summarization, the Siamese Hierarchical Transformer Encoders system, that is based on the use of siamese neural networks and the transformer encoders which are extended in a hierarchical way. The system, trained for binary classification, is able to assign attention scores to each sentence in the document. These scores are used to select the most relevant sentences to build the summary. The main novelty of our proposal is the use of self-attention mechanisms at sentence level for document summarization, instead of using only attentions at word level. The experimentation carried out using the CNN/DailyMail summarization corpus shows promising results in-line with the state-of-the-art.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference7 articles.

1. Begum N. , Fattah M. and Ren F. , Automatic text summarization using support vector machine, 5 (2009), 1987–1996.

2. Lexrank: Graph-based lexical centrality as salience in text summarization;Erkan;J Artif Int Res,2004

3. Siamese hierarchical attention networksfor extractive Summarization;González;Journal of Intelligent & Fuzzy Systems,2019

4. Text summarisation in progress: a literature review;Lloret;Artificial Intelligence Review,2012

5. Automatically assessing machine summary content without a gold standard;Louis;Comput Linguist,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3