COBALT: A Content-Based Similarity Approach for Link Discovery over Geospatial Knowledge Graphs

Author:

Becker Alexander1ORCID,Ahmed Abdullah1ORCID,Sherif Mohamed Ahmed1ORCID,Ngonga Ngomo Axel-Cyrille1ORCID

Affiliation:

1. DICE group, Department of Computer Science, Paderborn University

Abstract

Purpose: Data integration and applications across knowledge graphs (KGs) rely heavily on the discovery of links between resources within these KGs. Geospatial link discovery algorithms have to deal with millions of point sets containing billions of points. Methodology: To speed up the discovery of geospatial links, we propose COBALT. COBALT combines the content measures with R-tree indexing. The content measures are based on the area, diagonal and distance of the minimum bounding boxes of the polygons which speeds up the process but is not perfectly accurate. We thus propose two polygon splitting approaches for improving the accuracy of COBALT. Findings: Our experiments on real-world datasets show that COBALT is able to speed up the topological relation discovery over geospatial KGs by up to 1.47 × 104 times over state-of-the-art linking algorithms while maintaining an F-Measure between 0.7 and 0.9 depending on the relation. Furthermore, we were able to achieve an F-Measure of up to 0.99 by applying our polygon splitting approaches before applying the content measures. Value: The process of discovering links between geospatial resources can be significantly faster by sacrificing the optimality of the results. This is especially important for real-time data-driven applications such as emergency response, location-based services and traffic management. In future work, additional measures, like the location of polygons or the name of the entity represented by the polygon, could be integrated to further improve the accuracy of the results.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3