Immunoglobulin G follow-up and immune response longevity analysis in SARS-CoV-2 convalescent patients and vaccinated individuals: A longitudinal analysis

Author:

Maki Fadia Mothafar1ORCID,AL-Thwani Anima Namma1,Jiad Kareem Shahal2,Musafer Karar Nadhum Jawad3

Affiliation:

1. Genetic Engineering and Biotechnology Institute, University of Baghdad, Baghdad, Iraq

2. Iraqi Ministry of Health, Baghdad, Iraq

3. Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq

Abstract

BACKGROUND: Although the detection of immunoglobulin G (IgG) molecules has long been considered to be crucial for successful humoral immune defence against infections and harmful metabolites, it has become increasingly important in relation to SARS-CoV-2 research. OBJECTIVE: To compare longitudinal changes in IgG titres in post-infection and post-vaccination Iraqi participants, and to estimate the protective benefits of the two principal vaccines used in Iraq. METHODS: This quantitative study used samples from SARS-CoV-2 recovered patients (n= 75), those vaccinated with two doses of Pfizer or Sinopharm vaccine (n= 75), and healthy unvaccinated individuals (n= 50) who formed a control group. Participant ages (range 20–80 years) and sex (52.7% men, 47.3% females). An enzyme-linked immunosorbent assay was used to measure IgG. RESULTS: IgG antibody levels peaked in the first month and tapered off in the following three months in both convalescent and vaccinated groups. The latter showed a significant decrease in IgG titres than in the convalescent group. Samples from the group given the mRNA vaccination that targeted spike (S) proteins might have a cross-reactivity between nucleocapsid (N) and spike (S) proteins. CONCLUSIONS: Participants who had recovered from or who were vaccinated against SARS-CoV-2 exhibited a protective, persistent and durable humoral immune response for at least a month. This was more potent in the SARS-CoV-2 convalescent group compared to the vaccinated cohort. The IgG titres decayed faster after vaccination with Sinopharm than following the Pfizer-BioNTech vaccine.

Publisher

IOS Press

Subject

General Medicine,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3