A top-level model of case-based argumentation for explanation: Formalisation and experiments

Author:

Prakken Henry1,Ratsma Rosa1

Affiliation:

1. Department of Information and Computing Sciences, Utrecht University, The Netherlands. E-mails: h.prakken@uu.nl, rosaratsma@gmail.com

Abstract

This paper proposes a formal top-level model of explaining the outputs of machine-learning-based decision-making applications and evaluates it experimentally with three data sets. The model draws on AI & law research on argumentation with cases, which models how lawyers draw analogies to past cases and discuss their relevant similarities and differences in terms of relevant factors and dimensions in the problem domain. A case-based approach is natural since the input data of machine-learning applications can be seen as cases. While the approach is motivated by legal decision making, it also applies to other kinds of decision making, such as commercial decisions about loan applications or employee hiring, as long as the outcome is binary and the input conforms to this paper’s factor- or dimension format. The model is top-level in that it can be extended with more refined accounts of similarities and differences between cases. It is shown to overcome several limitations of similar argumentation-based explanation models, which only have binary features and do not represent the tendency of features towards particular outcomes. The results of the experimental evaluation studies indicate that the model may be feasible in practice, but that further development and experimentation is needed to confirm its usefulness as an explanation model. Main challenges here are selecting from a large number of possible explanations, reducing the number of features in the explanations and adding more meaningful information to them. It also remains to be investigated how suitable our approach is for explaining non-linear models.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Mathematics,Computer Science Applications,Linguistics and Language

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An explanation-oriented inquiry dialogue game for expert collaborative recommendations;Argument & Computation;2024-03-07

2. Constructing and Explaining Case Models: A Case-Based Argumentation Perspective;Lecture Notes in Computer Science;2024

3. Judicial Explanations;Lecture Notes in Computer Science;2024

4. Reasoning with inconsistent precedents;Artificial Intelligence and Law;2023-12-14

5. Learning Case Relevance in Case-Based Reasoning with Abstract Argumentation;Frontiers in Artificial Intelligence and Applications;2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3