Affiliation:
1. Center of Ultra-Precision Optoelectronic Instrument Engineering, Harbin Institute of Technology, Harbin, China
2. Key Lab of Ultra-Precision Intelligent Instrumentation, Harbin Institute of Technology, Harbin, Ministry of Industry and Information Technology Harbin, China
Abstract
This paper is to investigate the high-quality analytical reconstructions of multiple source-translation computed tomography (mSTCT) under an extended field of view (FOV). Under the larger FOVs, the previously proposed backprojection filtration (BPF) algorithms for mSTCT, including D-BPF and S-BPF (their differences are different derivate directions along the detector and source, respectively), make some errors and artifacts in the reconstructed images due to a backprojection weighting factor and the half-scan mode, which deviates from the intention of mSTCT imaging. In this paper, to achieve reconstruction with as little error as possible under the extremely extended FOV, we combine the full-scan mSTCT (F-mSTCT) geometry with the previous BPF algorithms to study the performance and derive a suitable redundancy-weighted function for F-mSTCT. The experimental results indicate FS-BPF can get high-quality, stable images under the extremely extended FOV of imaging a large object, though it requires more projections than FD-BPF. Finally, for different practical requirements in extending FOV imaging, we give suggestions on algorithm selection.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献