Fusion extracted features from deep learning for identification of multiple positioning errors in dental panoramic imaging

Author:

Su Hsin-Yueh1,Hsieh Shang-Ting2,Tsai Kun-Zhe3,Wang Yu-Li1,Wang Chi-Yuan4,Hsu Shih-Yen5,Liu Kuo-Ying6,Huang Yung-Hui4,Wei Ya-Wen7,Lu Nan-Han46,Chen Tai-Been48

Affiliation:

1. Department of Radiology, Hualien Armed Forces General Hospital, Hualien County, Taiwan

2. Department of Health Beauty, Fooyin University, Kaohsiung City, Taiwan

3. Department of Periodontology, Mackay Memorial Hospital, Taipei City, Taiwan

4. Department of Medical Imaging and Radiological Science, I-Shou University, Kaohsiung City, Taiwan

5. Department of Information Engineering, I-Shou University, Kaohsiung City, Taiwan

6. Department of Radiology, E-DA Cancer Hospital, I-Shou University, Kaohsiung City, Taiwan

7. Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan

8. Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

Abstract

BACKGROUND: Dental panoramic imaging plays a pivotal role in dentistry for diagnosis and treatment planning. However, correctly positioning patients can be challenging for technicians due to the complexity of the imaging equipment and variations in patient anatomy, leading to positioning errors. These errors can compromise image quality and potentially result in misdiagnoses. OBJECTIVE: This research aims to develop and validate a deep learning model capable of accurately and efficiently identifying multiple positioning errors in dental panoramic imaging. METHODS AND MATERIALS: This retrospective study used 552 panoramic images selected from a hospital Picture Archiving and Communication System (PACS). We defined six types of errors (E1-E6) namely, (1) slumped position, (2) chin tipped low, (3) open lip, (4) head turned to one side, (5) head tilted to one side, and (6) tongue against the palate. First, six Convolutional Neural Network (CNN) models were employed to extract image features, which were then fused using transfer learning. Next, a Support Vector Machine (SVM) was applied to create a classifier for multiple positioning errors, using the fused image features. Finally, the classifier performance was evaluated using 3 indices of precision, recall rate, and accuracy. RESULTS: Experimental results show that the fusion of image features with six binary SVM classifiers yielded high accuracy, recall rates, and precision. Specifically, the classifier achieved an accuracy of 0.832 for identifying multiple positioning errors. CONCLUSIONS: This study demonstrates that six SVM classifiers effectively identify multiple positioning errors in dental panoramic imaging. The fusion of extracted image features and the employment of SVM classifiers improve diagnostic precision, suggesting potential enhancements in dental imaging efficiency and diagnostic accuracy. Future research should consider larger datasets and explore real-time clinical application.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3