Application of dose-gradient function in reducing radiation induced lung injury in breast cancer radiotherapy

Author:

Bai Han12,Song Hui1,Li Qianyan1,Bai Jie3,Wang Ru1,Liu Xuhong1,Chen Feihu1,Pan Xiang1

Affiliation:

1. Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Xishan District, Kunming, Yunnan, People’s Republic of China

2. Department of Physics and Astronomy, Yunnan University, Kunming, Yunnan

3. Department of Radiation Oncology, Daqin Tumor Hospital, Guiyang, Guizhou, China

Abstract

OBJECTIVE: Try to create a dose gradient function (DGF) and test its effectiveness in reducing radiation induced lung injury in breast cancer radiotherapy. MATERIALS AND METHODS: Radiotherapy plans of 30 patients after breast-conserving surgery were included in the study. The dose gradient function was defined as D G H = V D V p 3 , then the area under the DGF curve of each plan was calculated in rectangular coordinate system, and the minimum area was used as the trigger factor, and other plans were triggered to optimize for area reduction. The dosimetric parameters of target area and organs at risk in 30 cases before and after re-optimization were compared. RESULTS: On the premise of ensuring that the target dose met the clinical requirements, the trigger factor obtained based on DGF could further reduce the V5, V10, V20, V30 and mean lung dose (MLD) of the ipsilateral lung in breast cancer radiotherapy, P <  0.01. And the D2cc and mean heart dose (MHD) of the heart were also reduced, P <  0.01. Besides, the NTCPs of the ipsilateral lung and the heart were also reduced, P <  0.01. CONCLUSION: The trigger factor obtained based on DGF is efficient in reducing radiation induced lung injury in breast cancer radiotherapy.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3