Minimum square distance thresholding method applying gray-gradient co-occurrence matrix

Author:

Zhang Hong,Zhi Qiang,Yang Fan

Abstract

In image thresholding segmentation, gray level of pixels is the basic element to describe images. Besides, the gradient information of pixels is also a key feature to represent image space distribution. Therefore, the co-occurrence probability of gray and gradient of pixels is an effective information to describe image. In this paper, gray-gradient asymmetrical co-occurrence matrix is constructed, uniformity probability of image region is produced, and a minimum square distance criterion function based on gray-gradient co-occurrence matrix is proposed to measure the deviation between original and binary images. Comparing with gray-gray asymmetrical co-occurrence matrix and relative entropy-based symmetrical co-occurrence matrix method, the proposed method can obtain more complete segmentation results, especially for small-size object extraction. The peak signal to noise ratio probability also shows the better segmentation performance of our proposed method.

Publisher

IOS Press

Subject

Artificial Intelligence,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3