3D-printed porous condylar prosthesis for temporomandibular joint replacement: Design and biomechanical analysis

Author:

Cheng Kang-Jie123,Liu Yun-Feng123,Wang Joanne H.4,Wang Russell5,Xia Jiang12,Xu Xu6,Jiang Xian-Feng12,Dong Xing-Tao12

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China

2. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang, China

3. National International Joint Research Center of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China

4. Department of Orthopedic Surgery, University Hospitals of Cleveland, Case Medical Center, Cleveland, OH, USA

5. Department of Comprehensive Care, Case Western Reserve University School of Dental Medicine, Cleveland, OH, USA

6. Department of Stomatology, People’s Hospital of Quzhou, Quzhou, Zhejiang, China

Abstract

BACKGROUND: Customized prosthetic joint replacements have crucial applications in severe temporomandibular joint problems, and the combined use of porous titanium scaffold is a potential method to rehabilitate the patients. OBJECTIVE: The objective of the study was to develop a design method to obtain a titanium alloy porous condylar prosthesis with good function and esthetic outcomes for mandibular reconstruction. METHODS: A 3D virtual mandibular model was created from CBCT data. A condylar defect model was subsequently created by virtual condylectomy on the initial mandibular model. The segmented condylar defect model was reconstructed by either solid or porous condyle with a fixation plate. The porous condyle was created by a density-driven modeling scheme with an inhomogeneous tetrahedral lattice structure. The porous condyle, supporting fixation plate, and screw locations were topologically optimized. Biomechanical behaviors of porous and solid condylar prostheses made of Ti-6Al-4V alloy were compared. Finite element analysis (FEA) was used to evaluate maximum stress distribution on both prostheses and the remaining mandibular ramus. RESULTS: The FEA results showed levels of maximum stresses were 6.6%, 36.4% and 47.8% less for the porous model compared to the solid model for LCI, LRM, and LBM loading conditions. Compared to the solid prosthesis, the porous prosthesis had a weight reduction of 57.7% and the volume of porosity of the porous condyle was 65% after the topological optimization process. CONCLUSIONS: A custom-made porous condylar prosthesis with fixation plate was designed in this study. The 3D printed Ti-6Al-4V porous condylar prosthesis had reduced weight and effective modulus of elasticity close to that of cortical bone. The

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3