Improving the quality of disaggregated SDG indicators with cluster information for small area estimates

Author:

Zulkarnain Rizky,Jayanti Dwi,Listianingrum Tri

Abstract

The increasing needs for more disaggregated data motivates National Statistical Offices (NSOs) to develop efficient methods for producing official statistics without compromising on quality. In Indonesia, regional autonomy requires that Sustainable Development Goals (SDGs) indicators are available up to the district level. However, several surveys such as the Indonesian Demographic and Health Survey produce estimates up to the provincial level only. This generates gaps in support for district level policies. Small area estimation (SAE) techniques are often considered as alternatives for overcoming this issue. SAE enables more reliable estimation of the small areas by utilizing auxiliary information from other sources. However, the standard SAE approach has limitations in estimating non-sampled areas. This paper introduces an approach to estimating the non-sampled area random effect by utilizing cluster information. This model is demonstrated via the estimation of contraception prevalence rates at district levels in North Sumatera province. The results showed that small area estimates considering cluster information (SAE-cluster) produce more precise estimates than the direct method. The SAE-cluster approach revises the direct estimates upward or downward. This approach has important implications for improving the quality of disaggregated SDGs indicators without increasing cost. The paper was prepared under the kind mentorship of Professor James J. Cochran, Associate Dean for Research, Prof. of Statistics and Operations Research, University of Alabama.

Publisher

IOS Press

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Management Information Systems

Reference10 articles.

1. Integrated statistics: a journey worthwhile;Yazdani;ESCAP Stats Brief,2019

2. Development of small area estimation in official statistics;Kordos;Stat Transit,2014

3. Cluster information of non-sampled area in small area estimation;Anisa;IOSR J Math,2014

4. Anisa R, Notodiputro KA, Kurnia A. Small Area Estimation for Non-Sampled Area Using Cluster Information and Winsorization with Application to BPS Data. In: Proc ICCS-13. Bogor; 2014: pp. 453–462.

5. Time-series clustering in R using the dtwclust package;Sarda-Espinosa;R J,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3