Cloud vs On-Premise HPC: A Model for Comprehensive Cost Assessment

Author:

Ferretti Marco1,Santangelo Luigi1

Affiliation:

1. Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Italy

Abstract

Cloud Computing has emerged as an interesting alternative for running business applications, but this might not be true for scientific applications. A comparison between HPC systems and cloud infrastructure not always sees the latter winning over the former, especially when only performance and economical aspects are taken into account. But if other factors, such as turnaround time and user preference, come into play, the landscape of the usage convenience changes. Choosing the right infrastructure, then, can be essentially seen as a multi-attribute decision-making problem. In this paper we introduce an evaluation model, based on a weighted geometric aggregation function, that takes into account a set of parameters, among which job geometry, cost, execution and turnaround time. The notion of user preference modulates the model, and allows to determine which platform, cloud or HPC, might be the best one. The model has then been used to evaluate the best architecture for several runs of two applications, based on two different communication models. Results show that the model is robust and there is a not negligible number of runs for which a cloud infrastructure seems to be the best place for running scientific jobs.

Publisher

IOS Press

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On-Premises versus Cloud Computing: A Comparative Analysis of Energy Consumption;2024 International Conference on Renewable Energies and Smart Technologies (REST);2024-06-27

2. Consideration of a Supercomputing System with Cloud Bursting Functionality from an Operational Perspective;2022 IEEE International Conference on Cloud Computing Technology and Science (CloudCom);2022-12

3. HPCGCN: A Predictive Framework on High Performance Computing Cluster Log Data Using Graph Convolutional Networks;2021 IEEE International Conference on Big Data (Big Data);2021-12-15

4. Memory Demands in Disaggregated HPC: How Accurate Do We Need to Be?;2021 International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS);2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3