Myoelectric human computer interaction using CNN-LSTM neural network for dynamic hand gesture recognition

Author:

Li Qiyu1,Langari Reza12

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, College Station, Texas

2. Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, Texas

Abstract

Human-computer interaction(HCI) has broad range of applications. One particular application domain is rehabilitation devices. Several bioelectric signals can potentially be used in HCI systems in general and rehabilitation devices in particular. Surface ElectroMyoGraphic(sEMG) signal is one of the more important bioelectric signals in this context. The sEMG signal is formed by muscle activation although the details are rather complex. Applications of sEMG are referred is commonly referred to as myoelectric control since the dominant use of this signal is to activate a device even if (as the term control may imply) feedback is not always used in the process. With the development of deep neural networks, various deep learning architectures are used for sEMG-based gesture recognition with many researchers having reported good performance. Nevertheless, challenges remain in accurately recognizing sEMG patterns generated by gestures produced by hand or the upper arm. For instance one of the difficulties in hand gesture recognition is the influence of limb positions. Several papers have shown that the accuracy of gesture classification decreases when the limb position changes even if the gesture remains the same. Prior work by our team has shown that dynamic gesture recognition is in principle more reliable in detecting human intent, which is often the underlying idea of gesture recognition. In this paper, a Convolutional Neural Network (CNN) with Long Short-Term Memory or LSTM (CNN-LSTM) is proposed to classify five common dynamic gestures. Each dynamic gesture would be performed in five different limb positions as well. The trained neural network model is then used to enable a human subject to control a 6 DoF (Degree of Freedom) robotic arm with 1 DoF gripper. The results show a high level of accurate performance achieved with the proposed approach. In particular, the overall accuracy of the dynamic gesture recognition is 84.2%. The accuracies vary across subjects but remain at approximately 90%for some subjects.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UViT: Efficient and lightweight U-shaped hybrid vision transformer for human pose estimation;Journal of Intelligent & Fuzzy Systems;2024-04-18

2. Hand Gesture Recognition: A Contemporary Overview of Techniques;2024 International Conference on Automation and Computation (AUTOCOM);2024-03-14

3. Hand Gesture Translation System based on Multi-Sensor Fusion;2023 8th International Conference on Integrated Circuits and Microsystems (ICICM);2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3