Analysis and performance optimization of LoRa network using the CE & SC hybrid approach

Author:

Amzil Abdellah1,Bellouch Abdessamad1,Boujnoui Ahmed1,Hanini Mohamed1,Zaaloul Abdellah2

Affiliation:

1. Computer, Networks, Mobility and Modeling Laboratory, Faculty of Sciences and Techniques, Hassan First University of Settat, IR2M, Settat, Morocco

2. Engineering, Mathematics and Computer Science Laboratory (IMI), Faculty of Sciences, Ibn Zohr University of Agadir, Agadir, Morocco

Abstract

In this research, we assess the impact of collisions produced by simultaneous transmission using the same Spreading Factor (SF) and over the same channel in LoRa networks, demonstrating that such collisions significantly impair LoRa network performance. We quantify the network performance advantages by combining the primary characteristics of the Capture Effect (CE) and Signature Code (SC) approaches. The system is analyzed using a Markov chain model, which allows us to construct the mathematical formulation for the performance measures. Our numerical findings reveal that the proposed approach surpasses the standard LoRa in terms of network throughput and transmitted packet latency.

Publisher

IOS Press

Subject

General Medicine

Reference24 articles.

1. Three-dimensional markov chain model to help reduce the spread of COVID-19 in IoT environment;Bellouch;J. Comput. Inf. Syst. Ind. Manag. Appl,2021

2. CO-ResNet: Optimized ResNet model for COVID-19 diagnosis from X-ray images;Bharati;International Journal of Hybrid Intelligent Systems,2021

3. Hybrid intelligent telemedical monitoring and predictive systems

4. CNN-SVM based vehicle detection for UAV platform;Valappil;International Journal of Hybrid Intelligent Systems,2021

5. Study of wireless communication technologies on internet of things for precision agriculture;Feng;Wireless Personal Communications,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3